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Abstract
The well-known two-slit interference is understood as a special relation between
an observable (localization at the slits) and a state (being on both slits). The
relation between an observable and a quantum state is investigated in the
general case. It is assumed that the amount of coherence equals that of
the incompatibility between an observable and a state. On these grounds,
an argument is presented that leads to a natural quantum measure of coherence,
called ‘coherence or incompatibility information’. Its properties are studied
in detail, making use of ‘the mixing property of relative entropy’ derived
in this paper. A precise relation between the measure of coherence of an
observable and that of its coarsening is obtained and discussed from the intuitive
point of view. Convexity of the measure is proved, and thus the fact that it
is an information entity is established. A few more detailed properties of
the coherence information are derived with a view to investigating the final-
state entanglement in general repeatable measurement, and, more importantly,
general bipartite entanglement in follow-ups of this study.

PACS numbers: 03.65.Ta, 03.67.Mn

1. Introduction

In a preceding paper [1] coherence in a relative sense, i.e., understood as a relation between
a given observable and a given quantum state, was postulated to be identical with the
incompatibility between the observable and the state as far as its quantity IC is concerned.
(For notation see the passage immediately following the proof of proposition 5 below.) Then
it was shown that the bipartite pure state entanglement is expressible as IC (with a suitable
observable).

Pure states cannot be obtained as mixtures. Therefore, the question if IC is concave, i.e., a
genuine entropy quantity, or convex, i.e., a genuine information one, or something third, could
not be put in this context. The first aim of this study is to clarify this point. (This is done in
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proposition 5.) To enable this, the mixing property of relative entropy (paralleling the mixing
property of entropy and Donald’s identity for relative entropy, see the remark) is derived.

In a follow-up of the mentioned paper [2] the special case of the final bipartite pure state
|ψ〉12 in repeatable measurement, when the initial state is pure, was studied. It was shown that
the initial quantity of incompatibility between the measured observable and the initial state
reappears as the amount of entanglement in |ψ〉12, and is further preserved when it is shifted
in reading the measurement result. This completes Vedral’s result [3] that the information
transfer from object (subsystem 1) to measuring apparatus (subsystem 2) does not exhaust the
mutual information I12 in the final state.

I think that it is of interest to find out if the mentioned preservation of the quantity of
incompatibility between the measured observable and the initial pure state is restricted to a
pure state, or it can be generalized to a mixed initial state. This is not a straightforward
generalization. It requires more knowledge on IC . The second aim of this study is to provide
such knowledge, which will be possible due to the mentioned auxiliary relative entropy
relations (see section 3).

In a further preceding paper [4] an arbitrary discrete incomplete observable A and
its completion Ac to a complete observable were investigated and it was shown that
IC(A, ρ) � IC(Ac, ρ) for any state ρ. This inequality is expected if the assumption on
the identity of the amount of coherence and that of incompatibility is correct. But it is
desirable to evaluate IC(Ac, ρ) − IC(A, ρ) and thus to try to acquire more insight into the
nature of IC . This is the third aim of this paper. (See the discussion after the proof of the
theorem below.)

The fourth aim of this paper is to present an argument that starts with the mentioned
identity assumption and leads to an expression for the quantity of coherence in a natural way.
Will this expression be the same as the ad hoc introduced one? This is done in section 2 and
an affirmative answer is obtained. It is summed up in the conclusion (subsection 5.2).

The fifth and last aim of this investigation is perhaps the most important one. Namely,
in [4] it was established that IC also plays an important role in some mixed bipartite states.
This line of research should be continued in a follow up because it may contribute to our
understanding of how mutual information in general bipartite states breaks up into a quasi-
classical part and entanglement, which is the object of study of a wide circle of researchers,
e.g. [5, 6]. To this purpose, one may need more detailed knowledge of the properties of IC .
To acquire such knowledge is the fifth aim of this paper (see section 4).

1.1. Background in classical statistical physics

To obtain a background for our quantum study of coherence, we assume that a classical discrete
variable A(q) = ∑

l alχl(q) is given (all al ∈ R being distinct). The symbol q denotes the
continuous state variables (as a rule, it consists of twice as many variables as there are degrees
of freedom in the system); χl are the characteristic functions ∀l : χl(q) ≡ 1 if q ∈ Al , and
zero otherwise. Naturally, Al are (Lebesgue measurable) sets such that A(q) = al if and only
if q ∈ Al , and

∑
l Al = Q, where Q is the entire state space (or phase space) and the sum is

the union of disjoint sets.
Let ρ(q) be a continuous probability distribution in Q with the physical meaning of a

statistical ‘state’ of the system. One can think of ρ(q) as a mixture

ρ(q) =
∑

l

plρl(q), (1)
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where ∀l : pl ≡ ∫
Q ρ(q)χl(q) dq are the statistical weights (probabilities of the results al

if A(q) is measured in ρ(q)), and ∀l, pl > 0 : ρl(q) ≡ ρ(q)χl(q)/pl are the ‘states’ with
definite (or sharp) values of A(q).

Let B(q) be any other continuous or discrete variable. Then, utilizing (1), its average can
be written

〈B〉ρ ≡
∫
Q

ρ(q)B(q) dq =
∑

l

pl〈B〉ρl
. (2)

One distinguishes the contributions of the individual eigenvalues al of A(q) through the terms
on the rhs. They each contribute to 〈B〉ρ separately.

All this serves only as a classical background to help us understand the non-classical, i.e.,
purely quantum relations between the analogous quantum entities.

1.2. Transition to the quantum mechanical case

The quantum mechanical analogues of the mentioned classical entities are the following.
Discrete observables (Hermitian operators) A = ∑

l alPl (spectral form in terms of distinct
eigenvalues), ρ quantum state (density operator), and B an arbitrary observable (Hermitian
operator). The quantum average is 〈B〉ρ ≡ tr(ρB).

In the transition from classical to quantum one runs into a surprise, that is known but,
perhaps, not sufficiently well known. Before we formulate it in the form of a lemma, let us
introduce the Lüders state ρL [7] in order to obtain the quantum analogues of relations (1)
and (2). It is that mixture of states, each with a definite value of A, which has a minimal
Hilbert–Schmidt distance from the given state ρ [8]. It is defined as

ρL ≡
∑

l

plρ
l
L, (3a)

where

∀l : pl ≡ tr(ρPl) (3b)

are again the statistical weights in (3a) (or the probabilities of the results al when A is measured
in ρ), and

∀l, pl > 0 : ρl
L ≡ PlρPl/pl (3c)

are the states with definite values al of A. Finally,

〈B〉ρL
=

∑
l

pl〈B〉ρl
L
. (3d)

Decomposition (3a) is the analogue of (1), and (3d) is that of (2).

Lemma 1. The following four statements are equivalent.
(i) The state ρ cannot be written as a mixture of states in each of which the observable A

has a definite value.
(ii) The observable A and the state ρ are incompatible, i.e., the operators do not commute

[A, ρ] �= 0.
(iii) The Lüders state ρL given by (3a)–(3c) is distinct from the original state ρ.
(iv) There exists an observable B such that

〈B〉ρ �= 〈B〉ρL
, (4)

where the rhs is given by (3d).

Proof is given in appendix 1.
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The physical meaning of lemma 1 is that it defines a kind of quantum coherence as a special
relation between an observable and a state. Experimentally it is exhibited in interference. In
this relative sense (relation between a variable and a state) it is lacking in classical physics
because there a state can always be written as a mixture of states in each of which the variable
in question has a definite value (negation of (i), cf (1)). Though classical waves do exhibit a
kind of coherence and show interference, but this is in a different sense (cf section 5).

One should note that the Lüders state needs no other characterization than its role in
lemma 1 (in particular (iii)). The fact that it is ‘closest’ to ρ in Hilbert–Schmidt metrics,
though actually not important for this study, raises the thought-provoking questions if ‘closest’
is also true in other metrics; if not, why are the Hilbert–Schmidt metrics more suitable?

We take two-slit interference [9] to serve as an illustration for lemma 1.
Let A be a dichotomic position observable with two eigenvalues: localization at the left

slit, and localization at the right slit on the first screen. Let ρ be a wave packet that has just
arrived at this two-slit screen. Next, one has to find a suitable observable B such that inequality
(4) be satisfied at the mentioned moment. Moreover, one wants to observe experimentally the
lhs of (4), or rather the individual probabilities of the eigenvalues of B (that go into the lhs).

To this purpose, one actually replaces B by another localization observable A′ on a second
screen, to which the photon will arrive some time later. This observable is suitable for
observation (of its localization probabilities). Hence, one can define B ≡ U−1A′U, U being
the evolution operator expressing the movement of the particle from the two-slit screen to the
second one. One should note that B is not a position observable though A′ is because the
Hamiltonian that generates U contains the kinetic energy (square of linear momentum).

Claim (i) of lemma 1 says that the particle is not moving through either the left or the right
slit. Claim (ii) expresses the same fact algebraically. Namely, ρ, being a pure state |ψ〉〈ψ |,
would commute with A only if |ψ〉 lay in an eigensubspace of A. In our case this would mean
that the particle traverses one of the slits.

The Lüders state ρL is, in some sense, the best approximation to ρ of a state traversing
one or the other of the slits. Naturally, ρ �= ρL as claimed by (iii). Claim (iv), i.e., relation
(4), amounts to the same as the fact that the interference pattern on the second screen is not
equal to the sum of those that would be obtained when only one of the slits was open (for
some time) and then the other (for another, disjoint, equally long time).

In the two-slit experiment one actually observes the time-delayed equivalent of (4):

〈A′〉UρU−1 �= 〈A′〉UρLU−1 . (5)

Since the lhs of (5) is distinct from the rhs, one speaks of the former as interference. In the
described two-slit case the lhs of (5) gives fringes, whereas the rhs does not. Nevertheless,
it is not always true that the lhs of (5) itself means interference. This is the case only with a
suitable pair of A and ρ (cf (ii) in lemma 1). Let me give a counterexample.

Let us take another two-slit experiment in which the slits have polarizers that give opposite
linear polarization to the light passing the slits [10]. The state ρ in the slits is then such that we
have equality in (5) (though A′ is the same), and there is no interference because [A, ρ] = 0.
(The state ρ = |ψ〉〈ψ | is now in the composite spatial-polarization state space, and the spatial
subsystem state—the reduced statistical operator—is a Lüders state.)

One should note that when interference is displayed, one has three ingredients: the state
ρ, the observable A the two eigenvalues of which play a cooperative role, and the second
observable A′ the probabilities of eigenvalues of which are observed. Since in theory there
can be many observables such as A′, or B in (4), one likes to omit them. Then one speaks of
coherence of the observable A in the state ρ. We make use of the same concepts in the general
theory.
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Definition 1. The lhs of relation (4), in case inequality (4) is valid, is called interference. If
an observable A and a state ρ stand in such a mutual relation that any of the four claims of
lemma 1 is known to be valid, then one speaks of coherence.

One should note that the concepts of interference and of coherence stand in a peculiar
relation to each other: There is no coherence (between A and ρ) unless an observable B
that exhibits interference can be, in principle, found; if the latter is the case, and only then,
one may forget about B, and concentrate on the relation between A and ρ, i.e., on coherence.
The kind of quantum coherence investigated in this paper can be more fully called ‘eigenvalue
coherence of an observable in relation to a state’ in view of the cooperative role of some
eigenvalues (or, more precisely, their quantum numbers, because the values of the eigenvalues
play no role) as seen in (4).

Thus, any of the four (equivalent) claims in lemma 1 defines coherence. But for the
investigation in this paper the important claim is (ii): coherence exists if and only if A and ρ

do not commute. This remark is the cornerstone of the expounded approach to investigating
coherence (as in the preceding studies [1, 4]).

2. How to obtain a quantum measure of coherence?

We start with the assumption that coherence of an observable A with respect to a state ρ is
essentially the same thing as incompatibility of A and ρ: [A, ρ] �= 0. The quantum measure
will be called coherence or incompatibility information, and it will be denoted by IC(A, ρ) or
shortly IC (cf (10) below).

One wonders what the meaning of a larger value of IC for coherence is. It is more of
what? The only answer I can think of is in accordance with the above assumption: more of
incompatibility of A and ρ.

The next question is: do we know what is a ‘larger amount of incompatibility’?
The seminal review on entropy of Wehrl [11] (section III.C there) explains that each

member of the Wigner–Yanase–Dyson family of skew information

Ip(ρ,A) ≡ −Sp(ρ,A) ≡ (1/2) tr([ρp,A][ρ1−p,A]), 0 < p < 1, (6)

is a good measure of incompatibility of ρ and A. Namely, Ip(ρ,A) is positive unless ρ and
A commute, when it is zero. It is also convex as an information quantity should be.

Substituting the spectral form of A in (6), one obtains

Ip = (1/2) tr

(∑
l

∑
l′

al[ρ
p, Pl]al′ [ρ

1−p, Pl′ ]

)
.

One can see that Ip depends on the eigenvalues of A.
As is well known, A and ρ are compatible if and only if all eigenprojectors Pl of the

former are compatible with the latter. The eigenvalues of A do not enter this relation. Hence,
Ip(ρ,A) given by (6) is not the kind of incompatibility measure that we are looking for. One
wonders if there is any other kind.

To obtain an answer, we turn to a neighbouring quantity: the quantum amount of
uncertainty of A in ρ. It is the entropy S(A, ρ):

S(A, ρ) ≡ H(pl), (7a)

where H(pl) is the Shannon entropy

H(pl) ≡ −
∑

l

pl log pl, (7b)
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and

∀l : pl ≡ tr(Plρ). (7c)

It is known that whenever A and ρ are incompatible, and A is a complete observable, i.e.,
if all its eigenvalues are nondegenerate (we will write it as Ac), then always S(Ac, ρ) > S(ρ).
When Ac is compatible with ρ, the two quantities are equal. The interpretation that the
larger the difference S(Ac, ρ) − S(ρ), the more incompatible Ac and ρ are seems plausible.
Hence, we require for complete observables Ac, that IC(Ac, ρ) should equal this quantity:
IC(Ac, ρ) ≡ S(Ac, ρ) − S(ρ). Equivalently, one can require that the following peculiar
decomposition of the entropy in the case of a complete observable should hold:

S(ρ) = S(Ac, ρ) − IC(Ac, ρ). (8)

On the other hand, if A is a discrete observable that is complete or incomplete but
compatible with ρ, then the following decomposition parallels (8):

S(ρ) = S(A, ρ) +
∑

l

plS(PlρPl/pl) (9)

(cf (7a), (7b) and (7c)). If pl = 0, the corresponding term in the sum is by definition zero.
Decomposition (9) is obtained by application of the mixing property of entropy [11] (see

sections II.F and II.B there). It applies to an orthogonal state decomposition, in this case to
ρ = ∑

l pl(PlρPl/pl), and it reads S(ρ) = H(pl) +
∑

l plS(PlρPl/pl) (cf (7b)).
The coherence information IC does not appear in (9). This is as it should be because it is

zero due to the assumed compatibility of A and ρ.
In the case of a general discrete A, which is complete or incomplete, compatible with

ρ or not, we must interpolate between (8) and (9). This can be done by observing that both
decompositions can be rewritten in a unified way as

IC(A, ρ) = S

(∑
l

PlρPl

)
− S(ρ) (10)

(valid for either A = Ac or for [A, ρ] = 0). The sought interpolated formula should thus be
the same relation (10), but valid this time for all discrete A. Thus, IC(A, ρ) is obtained by the
presented argument.

Making use of the mixing property of entropy, we can rewrite (10) equivalently as the
following general decomposition of entropy:

S(ρ) = S(A, ρ) +
∑

l

plS(PlρPl/pl) − IC(A, ρ). (11)

(Note that A is any discrete observable in (11).)
In order to derive a number of properties of coherence information, we make a deviation

into relative entropy theory.

3. Useful relative-entropy relations

The relative entropy S(ρ‖σ) of a state (density operator) ρ with respect to a state σ is by
definition

S(ρ‖σ) ≡ tr[ρ log(ρ)] − tr[ρ log(σ )] (12a)

if supp(ρ) ⊆ supp(σ ); (12b)

or else S(ρ‖σ) = +∞ (see page 16 in [12]). By ‘support’, denoted by ‘supp’, is meant the
subspace that is the topological closure of the range.



Coherence information 2965

If σ is singular and condition (12b) is valid, then the orthocomplement of the support
(i.e., the null space) of ρ, contains the null space of σ , and both operators reduce in supp(σ ).
Relation (12b) is valid in this subspace. Both density operators also reduce in the null space
of σ . Here the log is not defined, but it comes after zero, and it is generally understood that
zero times an undefined quantity is zero. We will refer to this as the zero convention.

The more familiar concept of (von Neumann) quantum entropy, S(ρ) ≡ − tr[ρ log(ρ)],
also requires the zero convention. If the state space is infinite dimensional, then, in a sense,
entropy is almost always infinite (cf page 241 in [11]). In finite-dimensional spaces, entropy
is always finite.

There is an equality for entropy that is much used, and we have utilized it, the mixing
property concerning orthogonal state decomposition (cf page 242 in [11]):

σ =
∑

k

wkσk, (13)

∀k : wk � 0; for wk > 0, σk > 0, tr σk = 1; ∀k �= k′: σkσk′ = 0;
∑

k wk = 1. Then
S(σ) = H(wk) +

∑
k wkS(σk),H(wk) ≡ −∑

k[wk log(wk)] being the Shannon entropy of
the probability distribution {wk : ∀k}.

The first aim of this section is to derive an analogue of the mixing property of entropy.
The second aim is to derive two corollaries that we shall need in this paper.

We will find it convenient to make use of an extension loge of the logarithmic function to
the entire real axis: if 0 < x : loge(x) ≡ log(x), if x � 0 : loge(x) ≡ 0.

The following elementary property of the extended logarithm will be utilized.

Lemma 2. If an orthogonal state decomposition (13) is given, then

loge(σ ) =
∑

k

′
[log(wk)]Qk +

∑
k

′
loge(σk), (14)

where Qk is the projector onto the support of σk , and the prime on the sum means that the
terms corresponding to wk = 0 are omitted.

Proof. Spectral forms ∀k,wk > 0: σk = ∑
lk

slk |lk〉〈lk| (all slk positive) give a spectral form
σ = ∑

k

∑
lk

wkslk |lk〉〈lk| of σ on account of the orthogonality assumed in (13) and the zero
convention. Since numerical functions define the corresponding operator functions via spectral
forms, one further obtains

loge(σ ) ≡
∑

k

∑
lk

[
loge

(
wkslk

)]|lk〉〈lk| =
∑

k

′ ∑
lk

[
log(wk) + log

(
slk

)]|lk〉〈lk|
=

∑
k

′
[log(wk)]Qk +

∑
k

′ ∑
lk

[
log

(
slk

)]|lk〉〈lk|.
(In the last step Qk = ∑

lk
|lk〉〈lk| for wk > 0 was made use of.) The same is obtained from

the rhs when the spectral forms of σk are substituted in it. �

Proposition 1. Let condition (12b) be valid for the states ρ and σ , and let an orthogonal state
decomposition (13) be given. Then one has

S(ρ‖σ) = S

(∑
k

QkρQk

)
− S(ρ) + H(pk‖wk) +

∑
k

pkS(QkρQk/pk‖σk), (15)

where, for wk > 0,Qk projects onto the support of σk , and Qk ≡ 0 if wk = 0, pk ≡ tr(ρQk),
and

H(pk‖wk) ≡
∑

k

[pk log(pk)] −
∑

k

[pk log(wk)] (16)
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is the classical discrete counterpart of the quantum relative entropy, valid because
(pk > 0) ⇒ (wk > 0).

One should note that the claimed validity of the classical analogue of (12b) is due to the
definitions of pk and Qk . Besides, (13) implies that

(∑
k Qk

)
projects onto supp(σ ). Further,

as a consequence of (12b),
(∑

k Qk

)
ρ = ρ. Hence, tr

(∑
k QkρQk

) = tr
(∑

k Qkρ
) = 1.

We call decomposition (15) the mixing property of relative entropy.

Proof of proposition 1. We define

∀k, pk > 0: ρk ≡ QkρQk/pk. (17)

First we prove that (12b) implies

∀k, pk > 0: supp(ρk) ⊆ supp(σk). (18)

Let k, pk > 0, be an arbitrary fixed value. We take a pure-state decomposition

ρ =
∑

n

λn|ψn〉〈ψn|, (19a)

∀n : λn > 0. Applying Qk, . . . ,Qk to (19a), one obtains another pure-state decomposition

QkρQk = pkρk =
∑

n

λnQk|ψn〉〈ψn|Qk (19b)

(cf (17)). Let Qk|ψn〉 be a nonzero vector appearing in (19b). Since (19a) implies that
|ψn〉 ∈ supp(ρ) (cf appendix 2(ii)), condition (12b) further implies |ψn〉 ∈ supp(σ ). Let us
write down a pure-state decomposition

σ =
∑
m

λ′
m|φm〉〈φm| (20)

with |φ1〉 ≡ |ψn〉. (This can be done with λ′
1 > 0 cf [13].) Then, applying Qk, . . . ,Qk to (20)

and taking into account (13), we obtain the pure-state decomposition

QkσQk = wkσk =
∑
m

λ′
mQk|φm〉〈φm|Qk.

(Note that wk > 0 because pk > 0 by assumption.) Thus, Qk|ψn〉 = Qk|φ1〉 ∈ supp(σk).
This is valid for any nonzero vector appearing in (19b), and these span supp(ρk)

(cf appendix 2(ii)). Therefore, (18) is valid.
On account of (12b), the standard logarithm can be replaced by the extended one in

definition (12a) of relative entropy: S(ρ‖σ) = −S(ρ) − tr[ρ loge(σ )]. Substituting (13) on
the rhs, and utilizing (14), the relative entropy S(ρ‖σ) becomes

−S(ρ) − tr

{
ρ

[∑
k

′
[log(wk)]Qk +

∑
k

′
[loge(σk)]

]}

= −S(ρ) −
∑

k

′
[pk log(wk)] −

∑
k

′
tr[ρ loge(σk)].

Adding and subtracting H(pk), replacing loge(σk) by Qk[loge(σk)]Qk , and taking into account
(16) and (17), one further obtains

S(ρ‖σ) = −S(ρ) + H(pk) + H(pk‖wk) −
∑

k

′
pk tr[ρk loge(σk)].

(The zero convention is valid for the last term because the density operator QkρQk/pk may
not be defined. Note that replacing

∑
k by

∑′
k in (16) does not change the lhs because only

pk = 0 terms are omitted.)
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Adding and subtracting the entropies S(ρk) in the sum, one further has

S(ρ‖σ) = −S(ρ) + H(pk) + H(pk‖wk) +
∑

k

′
pkS(ρk) +

∑
k

′
pk{−S(ρk) − tr[ρk loge(σk)]}.

Utilizing the mixing property of entropy, one can put S
(∑

k pkρk

)
instead of [H(pk) +∑′

k pkS(ρk)]. Owing to (18), we can replace loge by the standard logarithm and thus obtain
the rhs (15). �

Remark. In a sense, (15) runs parallel to Donald’s identity

S(ρ‖σ) =
∑

k

pkS(ρk‖σ) − H(pk),

when an orthogonal decomposition ρ = ∑
k pkρk of the first state ρ in relative entropy is

given.

For a general decomposition ρ = ∑
k pkρk of the first state Donald’s identity reads

S(ρ‖σ) =
∑

k

pkS(ρk‖σ) −
∑

k

pkS(ρk‖ρ)

[14, 15] (relation (5) in the latter). The more special relation in the remark follows from this
on account of the relation that generalizes the mixing property of entropy: if ρ = ∑

k pkρk is
any state decomposition, then

S(ρ) =
∑

k

pkS(ρk‖ρ) +
∑

k

pkS(ρk)

is valid (cf lemma 4 and remark 1 in [16]).
Now we turn to the derivation of some consequences of proposition 1.
Let ρ be a state and A = ∑

i aiPi +
∑

j ajPj be a spectral form of a discrete observable
(Hermitian operator) A, where the eigenvalues ai and aj are all distinct. The index i enumerates
all the detectable eigenvalues, i.e., ∀i: tr(ρPi) > 0, and tr

[
ρ
(∑

i Pi

)] = 1.
The simplest quantum measurement of A in ρ changes this state into the Lüders state

ρL(A) ≡
∑

i

PiρPi (21)

(cf (3a) and (3c)). Such a measurement is often called ‘ideal’.

Corollary 1. The relative-entropic ‘distance’ from any quantum state to its Lüders state is the
difference between the corresponding quantum entropies:

S

(
ρ

∥∥∥∥∥
∑

i

PiρPi

)
= S

(∑
i

PiρPi

)
− S(ρ).

Proof. First we prove that

supp(ρ) ⊆ supp

(∑
i

PiρPi

)
. (22)

To this purpose, we write down a decomposition (19a) of ρ into pure states. One has
supp

(∑
i Pi

) ⊇ supp(ρ) (equivalent to the certainty of
(∑

i Pi

)
in ρ, cf [4]), and the

decomposition (19a) implies that each |ψn〉 belongs to supp(ρ) (cf appendix 2(ii)). Hence,
|ψn〉 ∈ supp

(∑
i Pi

)
; equivalently, |ψn〉 = (∑

i Pi

)|ψn〉. Therefore, one can write

∀n: |ψn〉 =
∑

i

(Pi |ψn〉). (23a)
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On the other hand, (19a) implies∑
i

PiρPi =
∑

i

∑
n

λnPi |ψn〉〈ψn|Pi. (23b)

As seen from (23b), all vectors (Pi |ψn〉) belong to supp
(∑

iPiρPi

)
. Hence, so do all

|ψn〉 (due to (23a)). Since ρ is the mixture (19a) of the |ψn〉, the latter span supp(ρ)

(cf appendix 2(ii)). Thus, finally, (22) also follows.
In our case σ ≡ ∑

i PiρPi in (15). We replace k by i. Next, we establish

∀i: QiρQi = PiρPi. (24)

Since Qi is, by definition, the support projector of (PiρPi), and Pi(PiρPi) = (PiρPi), one
has PiQi = Qi (see appendix 2(i)). One can write PiρPi = Qi(PiρPi)Qi , from which
then (24) follows.

Realizing that wi ≡ tr(QiρQi) = tr(PiρPi) ≡ pi due to (24), one obtains H(pi‖wi) = 0
and ∀i: S(QiρQi/pi‖PiρPi/wi) = 0 in (15) for the case at issue. This completes the
proof. �

Now we turn to a peculiar further implication of corollary 1.
Let B = ∑

k

∑
lk

bklkPklk be a spectral form of a discrete observable (Hermitian operator)
B such that all eigenvalues bklk are distinct. Besides, let B be more complete than A or,
synonymously, a refinement of the latter. This, by definition, means that

∀k: Pk =
∑
lk

Pklk (25)

is valid. Here k enumerates both the i and the j index values in the spectral form of A.
Let ρL(A) and ρL(B) be the Lüders states (21) of ρ with respect to A and B respectively.

Corollary 2. The states ρ, ρL(A) and ρL(B) lie on a straight line with respect to the relative
entropy, i.e., S(ρ‖ρL(B)) = S(ρ‖ρL(A)) + S(ρL(A))‖ρL(B)), or explicitly

S


ρ

∥∥∥∥∥∥
∑

i

∑
li

(
Pili ρPili

)
 = S

(
ρ

∥∥∥∥∥
∑

i

(PiρPi)

)
+ S


∑

i

(PiρPi)

∥∥∥∥∥∥
∑

i

∑
li

(
Pili ρPili

)
 .

Note that all eigenvalues bklk of B with indices others than ili are undetectable in ρ.

Proof. Corollary 1 immediately implies

S(ρ‖ρL(B)) = [S(ρL(B)) − S(ρL(A))] + [S(ρL(A)) − S(ρ)],

and, as easily seen from (21), ρL(B) = (ρL(A))L(B) due to Pili Pi ′ = δi,i ′Pili (cf (25)). �

4. Properties of coherence information

To begin with, we notice in (10) that IC depends on ρ and A, actually only on the eigenprojectors
of the latter.

As a consequence of (10), one can also write the definition of IC in the form of a relative
entropy

IC = S

(
ρ

∥∥∥∥∥
∑

l

PlρPl

)
(26)

as follows from corollary 1.
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It was proved long ago [17] that S
(∑

l PlρPl

)
> S(ρ) if and only if A and ρ are

incompatible, and the two entropies are equal otherwise. Thus, in the case of compatibility
[A, ρ] = 0, IC is zero, otherwise it is positive. This is what we would intuitively expect.

It was proved in [4] (theorem 2 there) that

IC = wincIC

(
inc∑
l

alPl,

(
inc∑
l

Pl

)
ρ

(
inc∑
l

Pl

)/
winc

)
, (27)

where ‘inc’ on the sum denotes summing only over all those values of l the corresponding Pl

of which are incompatible with ρ, and winc ≡ tr
(
ρ

∑inc
l Pl

)
.

This corresponds to an intuitive expectation that the quantity IC should depend only on
those eigenprojectors Pl of A that do not commute with ρ, and not at all on those that do.

We obtain (27) as a special case of a much more general result below (cf the theorem and
propositions 2 and 3).

We shall need another known concept. For the sake of precision and clarity, we define it.

Definition 2. One says that a discrete observable Ā = ∑
m āmP̄ m (spectral form in terms

of distinct eigenvalues ām) is coarser than or a coarsening of A = ∑
l alPl if there is a

partitioning � in the set {l : ∀l} of all index values of the latter

�: {l : ∀l} =
∑
m

Cm,

such that

∀m: P̄ m =
∑
l∈Cm

Pl

(Cm are classes of values of the index l, and the sum is the union of the disjoint classes). One
also says that A is finer than or a refinement of Ā.

Theorem. Let Ā be any coarsening of A (cf definition 2). Then

IC(A, ρ) = IC(Ā, ρ) +
∑
m

[pmIC(P̄ mA, P̄ mρP̄ m/pm)], (28)

and ∀m: pm ≡ tr(ρP̄ m). (If pm = 0, then, by the zero convention, the corresponding IC in
(28) need not be defined. The product is by definition zero.)

Before we prove the theorem, we apply corollary 2 to our case.
Under the assumptions of the theorem, one has

S

(
ρ

∥∥∥∥∥
∑

l

(PlρPl)

)
= S

(
ρ

∥∥∥∥∥
∑
m

(P̄ mρP̄ m)

)
+ S

(∑
m

(P̄ mρP̄ m)

∥∥∥∥∥
∑

l

(PlρPl)

)
. (29)

Proof of the Theorem. On account of (26), (29) takes the form

IC(A, ρ) = IC(Ā, ρ) + IC

(
A,

∑
m

(P̄ mρP̄ m)

)
. (30)

Utilizing (10) for the second term on the rhs, the latter becomes S
(∑

l (PlρPl)
) −

S
(∑

m(P̄ mρP̄ m)
)
. Making use of the mixing property of entropy in both these terms,

and cancelling out H(pm) (cf (7b) mutatis mutandis), this difference, further, becomes∑
m pmS

(( ∑
l∈Cm

PlρPl

)/
pm

) − ∑
m pmS(P̄ mρP̄ m/pm)). Its substitution in (30) with the

help of (10) (and definition 2) then gives the claimed relation (28). (Naturally, one must
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be aware of the fact that Ā is a coarsening of A, hence ∀m: [P̄ m,A] = 0, implying
A ≡ ∑

m

∑
m′ P̄ mAP̄ m′ = ∑

m P̄ mA.) �

If Ā is any coarsening of A, then the index values m of the former replace classes Cm of
index values l of the latter. Hence, coherence in Ā — as a cooperative role of index values
— must be poorer than in A. Therefore, one would intuitively expect that IC(Ā, ρ) must not
be larger than IC(A, ρ). The theorem confirms this, and tells more: it gives the expression by
which IC(A, ρ) exceed IC(Ā, ρ). One wonders what the intuitive meaning of this is.

Discussion of the theorem. Let us think of ρ as describing a laboratory ensemble,
and let us imagine that an ideal measurement of Ā is performed on each quantum system
in the ensemble. The ensemble ρ is then replaced by the mixture

∑
m pm(P̄ mρP̄ m/pm)

of subensembles (P̄ mρP̄ m/pm). One can think of the measurement of the more refined
observable A as taking place in two steps: the first is the mentioned measurement of the coarser
observable Ā, and the second is a continuation of measurement of A in each subensemble
(P̄ mρP̄ m/pm). Let us assume additivity of IC in two-step measurement.

Further, let us bear in mind that, though IC is meant to be a property of each individual
member of the ensemble ρ, it is statistical, i.e., it is given in terms of the ensemble. Finally,
in the second step we have an ensemble of subensembles (a superensemble). Since our
system is anywhere in the entire ensemble

∑
m pm(P̄ mρP̄ m/pm) of the second step, one must

average over the superensemble with the statistical weights pm of its subensemble members
(P̄ mρP̄ m/pm).

If m′ �= m, then the part P̄ m′A of A = ∑
m′′ P̄ m′′A is evidently undetectable in the

subensemble ρm. Hence, only P̄ mA is relevant from the entire A, i.e., IC(A, ρ) reduces to
IC(P̄ mA, ρm) there.

In this way one can understand relation (28). What have we learnt from this? It is that
IC is additive and statistical. This conclusion is in keeping with the neighbouring quantity
S(A, ρ). Namely, one can easily derive a relation similar to (28) for it:

S(A, ρ) = S(Ā, ρ) +
∑
m

pmS(P̄mA, P̄ mρP̄ m/pm).

That IC and S(A, ρ) behave equally in an additive and statistical way is no surprise since they
are terms in the same general decomposition (11) of the entropy S(ρ) of the state ρ.

The theorem is a substantially stronger form of a previous result (theorem 3 in [4]),
in which IC(A, ρ) � IC(Ā, ρ) was established with necessary and sufficient conditions for
equality, which are obvious in the theorem. (IC was denoted by EC in previous work, cf my
comment following proposition 5 below.)

The theorem has the following immediate consequences.

Proposition 2. If the coarsening Ā defined in definition 2 is compatible with ρ, then (28)
reduces to

IC(A, ρ) =
∑
m

[pmIC(P̄ mA, P̄mρP̄m/pm)]. (31)

Proposition 3. Let us define a coarsening � (cf definition 2) that partitions {l : ∀l} into
at most three classes: Cinc comprising all index values l for which al is detectable (i.e., of
positive probability) and Pl is incompatible with ρ, Ccomp consisting of all l for which al is
detectable and Pl is compatible with ρ, and, finally, Cund which is made up of all l for which al

is undetectable. The coarsening thus defined is compatible with ρ, and (31) reduces to (27).



Coherence information 2971

Proof. In the coarsening � of proposition 3 the index m takes on three ‘values’: ‘inc’, ‘comp’,
and ‘und’. It is easily seen that the coarser observable Ā thus defined is compatible with ρ.
Hence, (31) applies. Further, the second and third terms are zero. In this way, (27) ensues. �

Proposition 4. Coherence information IC is unitary invariant, i.e., IC(A, ρ) =
IC(UAU †, UρU †), where U is an arbitrary unitary operator.

Proof. Relative entropy is known to be unitary invariant. On account of (26), so is IC . �

This is as it should be because IC should not depend on the basis in the state space:
UAU−1 and UρU−1 can be understood as A and ρ respectively viewed in another basis.

Proposition 5. Coherence information IC is convex.

Proof. This is an immediate consequence of the known convexity of relative entropy (cf (26))
under joint mixing of the two states in it. �

On account of convexity we know that IC is an information entity, and not an entropy one
(or else it would be concave). In previous work [1, 4, 2] the same quantity (the rhs of (10))
was erroneously denoted by EC(A, ρ) and treated as an entropy quantity. But this does not
imply that any of the applications of EC(A, ρ) was erroneous. All one has to do is to replace
this symbol by IC(A, ρ) and keep in mind that one is dealing with an information quantity.

5. Conclusion

Perhaps it is of interest to comment upon the more standard uses of the term ‘coherence’ in
the literature.

One encounters the basic use of the word ‘coherence’ in the properties of light waves.
One distinguishes two types of coherence there: (i) temporal coherence, which is a measure
of the correlation between the phases of a light wave at different points along the direction
of propagation, and (ii) spatial coherence, which is a measure of the correlation between the
phases of a light wave at different points transverse to the direction of propagation. (The
fascinating phenomenon of holography requires a large measure of both temporal and spatial
coherence of light.)

Quantum ‘coherence’ also refers to large numbers of particles that cooperate collectively
in a single quantum state. The best known examples are superfluidity, superconductivity and
laser light, all macroscopic phenomena. In the last example different parts of the laser beam
are related to each other in phase, which can lead to interference effects. ‘Coherence’ is often
related to different kinds of correlations, see, e.g., [18].

In all the mentioned examples ‘coherence’ refers to an absolute property of the quantum
state of the system; in contrast with the use of the term in this paper, which expresses a
relative property: relation between an observable and a state. As it was mentioned, the kind
of quantum coherence studied in this paper can be more fully called ‘eigenvalue coherence of
an observable in relation to a state’ in view of the cooperative role of the eigenvalues (or rather
their quantum numbers, because the values of the eigenvalues play no role) as seen in (4).

In the literature one often finds the claim that quantum pure states are coherent. From
the analytical point of view of this paper one can say that a pure state |ψ〉 is not coherent
with respect to any observable for which |ψ〉〈ψ | is an eigenprojector. But it is coherent with
respect to all other observables.
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5.1. On generality of the results

A question may linger on to the end of this study: what if the observable is not a discrete one?
Can one still speak of eigenvalue coherence in relation to a given state ρ?

It seems to me that the answer is that one should write down the following partial spectral
form of a general observable A′:

A′ =
∑

l

alPl + P ⊥A′P ⊥,

where the summation goes over all eigenvalues of A′, and P ≡ ∑
l Pl . One should take the

discrete coarsening A of A′:

A ≡
∑

l

alPl + aP ⊥,

where the eigenvalue a is arbitrary but distinct from all {al : ∀l}. Then the expounded
eigenvalue coherence theory should by applied to A, and it should be valid for A′ (as the best
we can do for the latter). In a preceding paper [4] the case when P ⊥ �= 0 with the eigenvalue
a undetectable was studied.

One has eigenvalue coherence of a general observable A′ in relation to a state ρ if either
A′ has at least two eigenvalues or if A′ has at least one eigenvalue and P ⊥ �= 0.

Another question that may linger on is whether the state ρ that was used in this paper is
really general. If ρ has an infinite-dimensional range and A has infinitely many eigenvalues,
it may happen that there are infinitely many detectable ones. The expounded theory covers
also this case.

5.2. Summing up

In an attempt to understand the essential features of two-slit interference (see lemma 1 followed
by its application to two-slit interference in subsection 1.2) a general coherence theory was
developed based on the assumption that ‘coherence’ equals ‘incompatibility’ [A, ρ] �= 0
between an observable and a state. Since this relation means that ρ is incompatible with at least
one eigenevent (eigenprojector) Pl of A, and this property is independent of the eigenvalues,
it was argued that the entire family of observables with one and the same decomposition
of the identity

∑
l Pl = I (the latter is called ‘closure relation’ if A is complete) should

have the same amount of incompatibility. This discarded the Wigner–Yanase–Dyson family
of skew information (6). Further, it was argued that the necessarily nonnegative quantity
S(Ac, ρ) − S(ρ) was a natural measure of incompatibility between a complete observable
Ac and the state ρ satisfying the stated claim. Finally, interpolating between the case of a
complete and that of a compatible observable (see (8)–(10)), the general expression (10) was
obtained.

Thus, a natural quantum measure of how much of coherence, and, equivalently,
incompatibility, there is if a discrete observable A = ∑

l alPl and a state ρ are given was
derived along the expounded argument. It was called coherence or incompatibility information
(denoted by IC(A, ρ) or shortly IC) in section 2.

A deviation into a general relative-entropy investigation was made in section 3. What was
called ‘the mixing property of relative entropy’ (paralleling that of entropy) was derived, and
so were two corollaries.

The relative-entropy results were utilized to express the coherence information IC(A, ρ)

in the form of a relative entropy (cf (26)) in section 4. Connection between the coherence
information IC(Ā, ρ) of any coarsening Ā (cf definition 2) of an observable A and IC(A, ρ)
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was obtained in the theorem. Its intuitive meaning was discussed. It was concluded that IC is
additive in two-step measurement and statistical.

The corresponding relation took a much simpler form in the case Ā was compatible with
ρ (cf proposition 2). In a special case of this a result from previous work was recognized
(cf proposition 3 and (27)). The coherence information was shown to be unitary invariant
(proposition 4) and convex (proposition 5).

In previous work [1, 2, 4] the coherence information IC was successfully utilized in
analysing bipartite quantum correlations. The last one of them filled in an information–
theoretical gap noted in a preceding investigation of the measurement process [3].

Since a number of new properties of IC have now been obtained, even more fruitful
applications can be expected.

Appendix 1.

We prove the equivalence of the negations of the four claims in lemma 1. (‘¬ (i)’ is the
negation of (i) etc, and ‘(⇔)’ is the claim of ‘⇔’) The logical scheme of the proof is: ¬ (ii)
⇔ ¬ (iii) ⇔ ¬ (iv); ¬ (ii) ⇒ ¬ (i) ⇒ ¬ (iii).

¬ (ii) (⇔)¬ (iii): one can always write ρ = ∑
l

∑
l′ PlρPl′ . Since A and ρ commute if

and only if each eigenprojector Pl of A commutes with ρ, the claimed equivalence is obvious.
(¬ (iii) ⇒ ¬ (iv)) is obvious. To prove (¬ (iv) ⇒ ¬ (iii)), we restrict the operators B to

ray projectors |a〉〈a|. Then ¬ (iv) implies tr(ρ|a〉〈a|) = 〈a|ρ|a〉 = 〈a|ρL|a〉 for every state
vector |a〉. But then, as is well known, one must have ρ = ρL, which is ¬ (iii).

¬ (ii) (⇒)¬ (i): in view of ρ = ∑
l

∑
l′ PlρPl′ , commutation of ρ with each Pl implies

¬ (i).
¬ (i) (⇒)¬ (iii): let us assume that ρ = ∑

l plρl , and that each state ρl has the sharp
value of the corresponding eigenvalue al of A. Then ρl = PlρlPl (cf lemma A.4. in [19]).
Substituting this in the state decomposition, and subsequently evaluating ρL according to
(3a)–(3c), one can see that ¬ (iii) follows.

Appendix 2.

Let ρ = ∑
n λn|n〉〈n| be an arbitrary decomposition of a density operator into ray projectors,

and let E be any projector. Then

Eρ = ρ ⇔ ∀n: E|n〉 = |n〉 (A.1)

(cf lemmas A.1. and A.2. in [20]).
(i) If the above decomposition is an eigendecomposition with positive weights, then∑

n |n〉〈n| = Q,Q being now the support projector of ρ, and, on account of (A.1),

Eρ = ρ ⇒ EQ = Q. (A.2)

(ii) Since one can always write Qρ = ρ, (A.1) implies that all |n〉 in the arbitrary
decomposition belong to supp(ρ). Further, defining a projector F so that supp(F ) ≡
span({|n〉 : ∀n}), one has FQ = F . Equivalence (A.1) implies Fρ = ρ. Hence, (A.2)
gives QF = Q. Altogether, F = Q, i.e., the unit vectors {|n〉 : ∀n} span supp(ρ).
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